Further theory of operational calculus on discrete analytic functions
نویسندگان
چکیده
منابع مشابه
Further Properties of Discrete Analytic Functions
for every point (x, y) E Z, X Z, . If Z, x Z, is identified with the lattice (h(m + in); m, 1z integers} embedded in the complex plane, then condition (1.1) is seen to be an “analyticity” condition: On each unit square of the lattice, the difference quotients along the two diagonals are the same. The above definition of analyticity was introduced by Ferrand [I] and many properties of such funct...
متن کاملA New Approach to the Theory of Discrete Analytic Functions
Lf(m,n)=f(m,n)+if(m+1,n)+i~f(m+1,n+1)+i3f(m,n+ 1) =o. (1.1) The concept of a discrete analytic function was introduced by Ferrand [l] and many properties of discrete analytic functions were obtained by D&in [2]. A convolution product for discrete analytic functions was defined by DufEn and Duris [3] and an operational calculus was developed by Hayabara [4] and further extended by Deeter and Lor...
متن کاملDiscrete Analytic Functions: An Exposition
Harmonic and analytic functions have natural discrete analogues. Harmonic functions can be defined on every graph, while analytic functions (or, more precisely, holomorphic forms) can be defined on graphs embedded in orientable surfaces. Many important properties of the “true” harmonic and analytic functions can be carried over to the discrete setting.
متن کاملMorse theory for analytic functions on surfaces
In this paper we deal with analytic functions f : S → R defined on a compact two dimensional Riemannian surface S whose critical points are semi degenerated (critical points having a non identically vanishing Hessian). To any element p of the set of semi degenerated critical points Q we assign an unique index which can take the values −1, 0 or 1, and prove that Q is made up of finitely many (cr...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1969
ISSN: 0022-247X
DOI: 10.1016/0022-247x(69)90181-4